Tetrahedron Letters, Vol. 22, No. 15, pp 1413 - 1416,1981 Printed in Great Britain 0040-4039/81/151413-04\$02.00/0 ©1981 Pergamon Press Ltd.

TOTAL SYNTHESIS OF THE DISACCHARIDE OF BLEOMYCIN,

 $2-0-(\alpha-D-MANNOPYRANOSYL)-L-GULOPYRANOSE$

Tsutomu Tsuchiya, Toshiaki Miyake, Shunji Kageyama and Sumio Umezawa Institute of Bioorganic Chemistry, 1614 Ida, Nakahara-ku, Kawasaki, 211 Japan

Hamao Umezawa and Tomohisa Takita Institute of Microbial Chemistry, Kamiosaki 3-14-23, Shinagawa-ku, Tokyo, 141 Japan

Summary: $2-0-(\alpha-\underline{D}-Mannopyranosyl)-\underline{L}-gulopyranose, the sugar portion of bleomycin has been synthesized.$

Bleomycin (BLM) is an antitumor antibiotic clinically used in the treatment of several types of cancer.¹ The definitive structure has been established^{2,3} as shown below.

Total synthesis of BLM attracted attention and the peptide part of BLM has recently been synthesized by Takita et al.⁴ This paper describes the first synthesis of the disaccharide part of BLM, namely $2-0-(\alpha-\underline{p}-mannopyranosyl)-\underline{L}-gulose^{5}$ (9).

As for a synthetic block for total synthesis of BLM, $\underline{}$ -gulose⁶ and its 3,4-di-0-benzyl derivatives⁷ could be the candidates. However, these compounds seem not suitable because the

introduction of the mannose portion into their 2-hydroxyl groups is extremely difficult. We chose, instead, to prepare 2-0-(\underline{P} -mannosyl)- \underline{L} -gulose (9) as a suitable precursor for total synthesis of BLM.

The characteristic points in the disaccharide synthesis are the early-stage condensation of <u>D</u>-mannose to the 5-OH group of a <u>D</u>-glucofuranose derivative, and successive head-to-tail inversion of the <u>D</u>-glucofuranose moiety, the C-5 of the <u>D</u>-glucose moiety being converted to C-2 in the new-born <u>L</u>-gulose moiety as a result of the inversion, thus completing the synthesis of \mathcal{D} .

Readily preparable 3-0-acetyl-1,2-0-isopropylidene-6-0-tosyl- \underline{D} -glucofuranose⁸ (1) was treated with sodium azide in N,N-dimethylformamide to give the corresponding 6-azido derivative (2) (syrup, 71%), $[\alpha]_D^{25} - 6^\circ$ (c l, chloroform), i.r. 2100 cm⁻¹ (N₃). This compound is apt to suffer 3-0- to 5-0-acetyl migration to give 5-0-acetyl isomer (2), during the reaction. However, condensation of 2 with 2,3,4,6-tetra-0-acetyl- α -D-mannopyranosyl bromide⁹ (4) in CH2Cl2 in the presence of Hg(CN)2 gave 3-0-acetyl-6-azido-6-deoxy-1,2-0-isopropylidene-5-0-(2,3,4,6-tetra-0-acety1-a-D-mannopyranosy1)-D-glucofuranose (5) (52%, after chromatography), $[\alpha]_{D}^{25}$ - 36° (c 1, chloroform); Found (Calcd): C, 48.80 (48.62), H, 5.66 (5.71), N, 6.48 (6.81). The possibility of condensation between 2' and 4 was negligible, because 5 retains, in its ¹H-NMR spectrum (in CDCl₃), almost identical δ and J values with those of 2 in respect to (CH₃)₂C, (s 1.34, 1.58), 3-0-Ac (2.17), H-1 (5.90 d, J_{1,2} 3.5 Hz), H-2 (4.56 d) and H-3 (5.32 d, $J_{3,4}^{3,2}$ 3.0 Hz). Deacetylation of 5 gave 6 (85%) as needles, m.p. 170 - 170.5°, $[\alpha]_D^{25}$ + 34° (c l, water); ¹H-NMR (in D₂0): 6 5.09 (a slightly unresolved s, H-1'), 6.00 (d, J_{1,2} 3.5 Hz, H-1). Carbon-13 NMR spectrum of 6 was shown in Table 1. The assignments were made on the basis of comparison with the shift data of 6-azido-6-deoxy-1,2-0-isopropylidene- \underline{D} -glucofuranose (3) (deacetylated product of 2) [needles, m.p. 107.5 - 108.5°. $\left[\alpha\right]_{D}^{25}$ - 11° (c 1, water)] and of methyl α - \underline{P} -mannopyranoside (Me α - \underline{P} -Man). Down-field shift¹⁰ (7.4 ppm) of C-5 from that position in 3 shows that glycosidation occurred at the carbon. The anomeric configuration $(\alpha - \underline{D})$ of the mannoside was verified by the $J_{C1'}$ - H_1' value (that of β -D-mannoside is expected 11 to be ca. 160 Hz) and the shift-values (C-1' - C-6'); methyl β -D-mannoside gave different values.^{12,13}

Acidic hydrolysis of 6 gave deacetonated product (7), which was reduced with sodium borohydride to give a non-reducing sugar, 6-azido-6-deoxy-5-0-(α -D-mannopyranosyl)-D-glucitol (8) (69% from 6 after purification), $[\alpha]_D^{24} + 24^\circ$ (c 0.9, water); i.r. 2100 cm⁻¹; ¹H-NMR (in D₂0): **§** 5.07 (1 H d, J_{11, 21} 1.5 Hz, H-1').

Conversion of the $-\dot{CH_2N_3}$ group of 8 to aldehyde group was successfully carried out by photolysis, which was first applied to carbohydrates by Horton et al.¹⁵ A 2.5% aqueous solution of 8 was, after bubbling nitrogen, irradiated (3000Å, 5.5 h) at room temperature, and, after addition of Dowex 50W x8 resin (H⁺ form), the mixture was stirred for 1 h. During the reaction, intermediary imine¹⁵ was converted to an aldehyde and the latter condensed with the hydroxyl group at C-5 (former C-2 of glucofuranose) to form L-gulopyranose. The crude product obtained after evaporation was purified by silica gel column-chromatography (Wakogel C-200, 2:1:1 butanol-acetic acid-water) to give 9 as a hygroscopic solid (48%) $[\alpha]_D^{25} + 96^\circ$ (c 1, water) (final value); Found (Calcd as hemihydrate): C, 41.01 (41.02), H, 6.46 (6.59). Acetylation of 9 with acetic anhydride in pyridine gave 1,3,4,6-tetra-0-acetyl-2-0-(2,3,4,6-tetra-0-acetyl- α -D-mannopyranosyl)- β -L-gulopyranose (10) (82%), $[\alpha]_D^{25}$ + 36° (c 0.5, chloroform); Found (Calcd); C, 49.30 (49.56), H,5.69 (5.64). The ¹H-NMR data (Table 2) indicates the conformation as shown in 10. The i.r. and the ¹H-NMR spectra of the compound were identical with those of the compound obtained by acetylation of natural decarbamoyl disaccharide.⁵ We are now challenging the total synthesis of bleomycin by utilizing the synthesized disaccharide (9).

References

- 1. H. Umezawa, Progr. Biochem. Pharmacol., 11, 18-27 (1976).
- T. Takita, Y. Muraoka, T. Nakatani, A. Fujii, Y. Umezawa, H. Naganawa and H. Umezawa, J. Antibiot., 31 801-804 (1978).
- T. Takita, Y. Muraoka, T. Nakatani, A. Fujii, Y. Iitaka and H. Umezawa, J. Antibiot., 31, 1073-1077 (1978).

Table	1. ¹³ C Chem	ical shift data ^a
(62.9 MHz	in $D_{2}0$) of (5
	õ	3 ^b
C-1	105.5	105.4
(¹ л _{с.н}	186.0 Hz)	(¹ J _{C.H} 185.9 Hz)
-2	85.4	85.2
-3	74.4 ^C	74.1
-4	79.5	80.9
-5	75.3	67.9
-6	53.4	55.0
СН _З	26.0, 26.5	26.0, 26.4
<u>ĉ(</u> ČH ₃)2	113.6	113.5
52		Me ∝- <u>D</u> -Man ^d
C-1'	102.1	101.6
(¹ јс.н	171.3 Hz) ((¹ J _{C.H} 170.7 Hz)
-2'	71.1	70.7
-3'	71.1	71.4
-4'	67.4	67.5
-5'	74.0 ^C	73.3
-6'	61.8	61.7
осн ₃		55.5

a: Ppm downfield from TMS calculated as $\kappa^{\text{TMS}} = \delta^{\text{dioxane}} + 67.4.$ b: Shift assignments were made based on the data of 1,2-0isopropylidene-D-glucofuranose.¹⁴ c: The values of C-3 and C-5' may be interchangeable. d: Measured in D_20 ; the shift-values were almost identical to those reported. 13,14

Tabl (250 MHz	e 2. ¹ H-NMR in CDC1 ₃)	spectrum of	10
H-1	5.90 d	J _{1.2}	8.5
-2	4.00 dd	$J_2 3$	3.5
-3	5.45 t	J _{3 4}	3.5
-4	5.02 dd	J _{4.5}	1.5
-1'	4.99 d	J ₁ , 2,	1.8
-2'	5.10 dd	J ₂ , 3,	3.4
-3'	5.16 dd	י אי ג' ג' י ג' ג'	10.1
-4'	5.28 t	~ , '	

a: Assignments were made by decoupling technique as well as inspection of the signal patterns.

- 4. T. Takita, Y. Umezawa, S. Saito, H. Morishima, H. Umezawa, Y. Muraoka, M. Suzuki, M. Otsuka, S. Kobayashi and M. Ohno, Tetrahedron Letters, in press; Y. Umezawa, H. Morishima, S. Saito, T. Takita, H. Umezawa, S. Kobayashi, M. Otsuka, M. Narita and M. Ohno, J. Am. Chem. Soc., 102, 6630-6631 (1980).
- 5. S. Omoto, T. Takita, K. Maeda, H. Umezawa and S. Umezawa, J. Antibiot., 25, 752-754 (1972).
- 6. R. L. Whistler and J. N. BeMiller, Methods Carbohydr. Chem. Vol 1, p 137-139, Academic Press (1962); M. E. Evans and F. W. Parrish, Carbohydr. Res., 28, 359-364 (1973); related references are cited therein.
- 7. D. K. Minster and S. M. Hecht, J. Org. Chem., 43, 3987-3988 (1978).

M. Nakajima and S. Takahashi, Agr. Biol. Chem., 31, 1079-1081 (1967).
F. Micheel and H. Micheel, Chem. Ber., 63, 386-393 (1930).
T. Usui, N. Yamaoka, K. Matsuda, K. Tuzimura, H. Sugiyama and S. Seto, J. Chem. Soc. Parkin I, 1973, 2425-2432.
K. Bock, I. Lundt and C. Pedersen, Tetrahedron Letters, 1973, 1037-1040; K. Bock and

- C. Pedersen, J. Chem. Soc. ParkinI, 1974, 293-297.
- 12. A. S. Perlin, B. Casu and H. J. Koch, Can. J. Chem., 48, 2596-2606 (1970).
- 13. T. E. Walker, R. E. London, T. W. Whaley, R. Barker and N. A. Matwiyoff, J. Am. Chem. Soc., 98, 5807-5813 (1976).
- 14. D. W. Vyas, H. C. Jarrell and W. A. Szarek, Can. J. Chem., 53, 2748-2754 (1975).
- 15. D. Horton, A. E. Luetzow and J. C. Wease, Carbohydr. Res., 8, 366-367 (1968).

(Received in Japan 30 December 1980)